grounding conductor and groundingtype attachment plug.

- (d) Bonding of noncurrent-carrying metal parts. (1) All exposed noncurrent-carrying metal parts that may become energized shall be effectively bonded to the grounding terminal or enclosure of the distribution panelboard. A bonding conductor shall be connected between each distribution panelboard and an accessible terminal on the chassis.
- (2) Grounding terminals shall be of the solderless type and approved as pressure-terminal connectors recognized for the wire size used. Star washers or other approved paint-penetrating fitting shall be used to bond terminals to chassis or other coated areas. The bonding conductor shall be solid or stranded, insulated or bare and shall be No. 8 copper minimum, or equal. The bonding conductor shall be routed so as not to be exposed to physical damage. Protection can be afforded by the configuration of the chassis.
- (3) Metallic gas, water and waste pipes and metallic air-circulating ducts shall be considered bonded if they are connected to the terminal on the chassis (see §3280.809) by clamps, solderless connectors, or by suitable grounding-type straps.
- (4) Any metallic roof and exterior covering shall be considered bonded if (i) the metal panels overlap one another and are securely attached to the wood or metal frame parts by metallic fasteners, and (ii) if the lower panel of the metallic exterior covering is secured by metallic fasteners at a cross member of the chassis by two metal straps per manufactured home unit or section at opposite ends. The bonding strap material shall be a minimum of 4 inches in width of material equivalent to the skin or a material of equal or better electrical conductivity. The straps shall be fastened with paint-penetrating fittings (such as screws and star washers or equivalent).

[40 FR 58752, Dec. 18, 1975. Redesignated at 44 FR 20679, Apr. 6, 1979, as amended at 58 FR 55020, Oct. 25, 1993]

§3280.810 Electrical testing.

(a) Dielectric strength test. The wiring of each manufactured home shall be subjected to a 1-minute, 900 to 1079 volt dielectric strength test (with all

switches closed) between live parts and the manufactured home ground, and neutral and the manufactured home ground. Alternatively, the test may be performed at 1080 to 1250 volts for 1 second. This test shall be performed after branch circuits are complete and after fixtures or appliances are installed. Fixtures or appliances which are listed shall not be required to withstand the dielectric strength test.

- (b) Each manufactured home shall be subject to:
- (1) A continuity test to assure that metallic parts are properly bonded;
- (2) Operational test to demonstrate that all equipment, except water heaters, electric furnaces, dishwashers, clothes washers/dryers, and portable appliances, is connected and in working order; and
- (3) Polarity checks to determine that connections have been properly made. Visual verification shall be an acceptable check.

[58 FR 55020, Oct. 25, 1993]

§ 3280.811 Calculations.

- (a) The following method shall be employed in computing the supply cord and distribution-panelboard load for each feeder assembly for each manufactured home and shall be based on a 3-wire, 120/240 volt supply with 120 volt loads balanced between the two legs of the 3-wire system. The total load for determining power supply by this method is the summation of:
- (1) Lighting and small appliance load as calculated below:
- (i) Lighting volt-amperes: Length time width of manufactured home (outside dimensions exclusive of coupler) times 3 volt-amperes per square foot; e.g. Length \times width \times 3=lighting volt-amperes.
- (ii) Small appliance volt-amperes: Number of circuits time 1,500 volt-amperes for each 20-ampere appliance receptacle circuit (see definition of "Appliance Portable" with Note): e.g. Number of circuits \times 1,500=small appliance volt-amperes.
- (iii) Total volts-amperes: Lighting volts-amperes plus small appliance=total volt-amperes.